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Abstract
Biomimetic membranes such as lipid bilayers with several molecular
components exhibit intramembrane domains. These domains are formed after
the membranes are quenched into a two-phase coexistence region. Solid
domains tend to form facets or cylindrical segments whereas liquid domains
tend to form spherical buds. In the latter case, one can distinguish three
tension regimes; budding always occurs in the low tension regime for which we
present preliminary experimental results for vesicle membranes composed of
phospholipid, sphingomyelin and cholesterol. A multicomponent vesicle which
adheres to a substrate surface consists of a bound and an unbound membrane
segment which differ in their compositions. This shift in composition can
induce domains within the bound segment. Such domains are also formed
when membranes adhere via sticker molecules and can be driven (i) by the
interplay of sticker adhesion and shape fluctuations and (ii) by the competition
between sticker and repeller molecules.

Glossary: list of symbols

α, β two types of membrane phase
A, B two types of membrane molecule
A surface area
Aα,Aβ surface area of α and β phase
χα, χβ area fraction of α and β phase
�E activation energy
�P osmotic pressure difference
�U difference in interaction energies across domain boundary
κ bending rigidity
κα bending rigidity of α domain
λ line tension of domain boundary
�mo lateral size of lipid molecule
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2 http://www.mpikg-golm.mpg.de/th/people/dimova/

0953-8984/03/010031+15$30.00 © 2003 IOP Publishing Ltd Printed in the UK S31

stacks.iop.org/JPhysCM/15/S31


S32 R Lipowsky and R Dimova

L domain size of single β domain defined via area Aβ = π L2

Lc characteristic domain size at which flat domain becomes unstable
L∗ domain size at which flat domain coexists with spherical bud
M mean curvature of membrane surface
Msp preferred or spontaneous curvature
Msp,α spontaneous curvature of α domain
NA, NB number of A and B molecules
Nfac number of facets on vesicle corresponding to rigid solid domains
	c shape function for domain size Lc

	∗ shape function for domain size L∗
ρex particle number density in exterior compartment
Rve vesicle size as defined by the surface area
� membrane tension
T temperature (in energy units)
U cis interaction between sticker molecules
UAB interaction energy between A and B lipids
v volume-to-area ratio
V volume of vesicle
Vsp volume of spherical shape bounded by the same area
w reduced and dimensionless adhesion energy per unit area
W adhesion energy per unit area
ξ invagination length for domain-induced budding
ξ� crossover scale arising from the membrane tension �

X mole fraction of A molecules in two-component membrane

1. Introduction

The membranes considered here are bimolecular layers of amphiphilic molecules which form
in aqueous solution. These bilayers are very thin with a thickness of a few nanometres but
have a large lateral extension up to tens of micrometres. We will focus on bilayers with several
components such as phospholipids, cholesterol and anchored macromolecules. These bilayer
membranes represent simple model systems for biological membranes which typically contain
hundreds of different components [1].

Since multicomponentbilayers are mesoscopic two-dimensional systems, they can exhibit
several phases and phase coexistence regions in close analogy with macroscopic three-
dimensional systems. If the membrane composition belongs to a coexistence region, one
will find different types of membrane domain, i.e., laterally extended regions or zones within
the membrane which differ in composition from their surroundings [2].

In the context of biomembranes, textbooks on molecular cell biology such as [3–6]
typically discuss the formation of membrane domains which arise from the aggregation of
proteins such as clathrin [7] but ignore the possibility that domain formation may also be driven
by lipid segregation. The latter process has found renewed interest in the context of ‘rafts’
which are membrane domains containing phospholipids, sphingomyelin and cholesterol [2, 8–
10]. ‘Rafts’ in biomembranes are difficult to detect experimentally, however, and the evidence
for their existence is still rather indirect and controversial. In contrast, for lipid bilayers, it is
now possible to obtain direct images of domains in large vesicles using advanced methods of
optical microscopy [11, 12].
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In this article, the formation and morphology of membrane domains will be discussed
from the ‘liquid matter’ point of view which emphasizes the cooperative behaviour of many
molecules. Therefore, we will simplify the terminology for these molecules and use the
term ‘lipid’ as a generic name for phospholipids, glycolipids, sphingomyelin and cholesterol.
Likewise, the terms ‘sticker’ and ‘repeller’ denote macromolecules which are anchored in the
membrane and which are adhesive and nonadhesive, respectively.

We will start from phase diagrams for lipid bilayers which exhibit liquid–solid and liquid–
liquid coexistence regions. For such bilayer membranes in water, the terms ‘liquid phase’ and
‘fluid phase’ have the same meaning since these membranes cannot exhibit a dilute, vapour-
like phase. In addition, we will use the term ‘solid membrane’ in the sense that the molecules
have a fixed lateral connectivity and a nonzero shear modulus.

The simplest procedure to create intramembrane domains is to quench the multicomponent
membrane into a coexistence region via a change in temperature or membrane composition.
The morphology of the resulting domains depends on their thermodynamic phase. As discussed
below, solid domains tend to form facets or cylindrical segments whereas fluid domains tend
to form spherical buds.

This article is organized as follows. First, section 2 describes phase diagrams for lipid
mixtures and explains the distinction between solid and fluid membranes. We then focus on
giant vesicles since they provide rather convenient model systems for which one has several
control parameters, see section 3. The main part of this article is about the morphology of multi-
domain vesicles as discussed in section 4 and about domain formation induced by membrane
adhesion, see section 5. There are several distinct mechanisms for adhesion-induced membrane
domains; a particularly simple one is provided by the change in membrane composition arising
from the interaction with the substrate surface. At the end, we give a brief outlook and propose
fusion of aspirated vesicles as an alternative method to create vesicles with multi-domain
patchworks.

Even though this article is basically a review of previous theoretical work from our group,
it contains several original pieces: the prediction that solid domains in a fluid matrix tend to
form cylindrical segments, see section 4.1; the identification of three different tension regimes
for budding of fluid domains and preliminary experimental results for the low-tension regime,
see section 4.2, and theoretical results for adhering vesicles in the limit of strong adhesion
which leads to changes in vesicle volume and to shifts in the membrane composition, see
section 5.

2. Domain formation via phase separation

2.1. Phase diagrams

For many two-component membranes, the phase diagram has been determined experimentally
using a variety of experimental methods. If the membranes contain two phospholipids, their
phase diagram typically exhibits a solid–liquid coexistence region as shown in figure 1(a).
Similar studies have also been performed for binary mixtures of one phospholipid and
cholesterol. For DPPC and cholesterol, the corresponding phase diagram exhibits three
coexistence regions as shown in figure 1(b) [13]. In addition, ternary phase diagrams have
been determined for a few three-component membranes containing two phospholipids and
cholesterol [14, 15]. The phase diagram determined in [14] is schematically shown in
figure 1(c).
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Figure 1. Schematic phase diagrams as a function of membrane composition and temperature
T : (a) binary mixture of two phospholipids A and B, (b) binary mixture of phospholipid B and
cholesterol C and (c) ternary mixture of A, B and C at room temperature. Solid phases are denoted
by S, liquid (or fluid) phases by L; the subscripts o and d stand for ‘ordered’ and ‘disordered’,
respectively. Two-phase coexistence regions between a solid and a liquid phase are light grey;
the corresponding regions between two liquid phases are dark grey. The three-phase coexistence
region in (c) is denoted by 3.

2.2. Solid versus fluid membranes

At this point, it is useful to recall the basic distinction between solid and fluid membranes.
Within a solid phase, the membrane molecules have a fixed connectivity and the membrane
resembles a thin plate. According to classical elasticity theory, such a plate can undergo three
types of elastic deformation: stretching, shearing and bending [16, 17]. If such a solid plate is
deformed into a spherical segment characterized by a nonzero Gaussian curvature, it has to be
stretched locally in order to satisfy the constraint of fixed connectivity. This can be done with a
sheet of rubber which is relatively easy to stretch but is essentially impossible for a sheet of paper
which is (almost) incompressible. Thus, a solid membrane, which is (almost) incompressible
(or unstretchable), can exhibit only one-dimensional bends with vanishing Gaussian curvature
corresponding to cylindrical membrane segments. This incompressible limit is appropriate for
lipid bilayers since these membranes rupture when their area is increased by a few per cent.

In contrast to solid membranes, liquid or fluid membranes have a vanishing shear modulus
and any shear deformation relaxes by flow within the membrane. Thus, they can exhibit two-
dimensional bends and form spherical segments with nonvanishing Gaussian curvature. The
corresponding bending energy is governed by two elastic parameters, the bending rigidity κ

and the spontaneous curvature Msp .
The bending rigidity of lipid bilayers in the fluid phase is of the order of 10−19 J. The

spontaneous curvature depends on the molecular structure of the bilayer and on its interactions
with its environment. It can be controlled, to some extent, by the concentration of anchored
polymers and dispersed particles, see, e.g., [2, 18–20]. If the exchange of molecules (or rate
of flip–flops) between the two monolayers is slow, one has an additional contribution to the
spontaneous curvature arising from the area difference of the two monolayers [21].

2.3. Quench into coexistence region

Now, if one changes the temperature or composition in such a way that the membrane is
quenched into a coexistence region, its composition will become heterogeneous and the
membrane will undergo lateral phase separation which should lead to the formation of
intramembrane domains as observed in [11, 12]. As in other two-dimensional systems, these
domains should be formed by nucleation or spinodal decomposition.
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For a ‘shallow’ quench which leads to a state within the coexistence region but close to the
original one-phase region, one has to overcome a nucleation barrier with an activation energy
�E which is large compared to T (here and below, the temperature is measured in energy
units, i.e., the Boltzmann factor has been absorbed into the symbol T ). After a nucleation time
∼ exp(�E/T ), the first domain appears which will then grow by diffusion-limited aggregation
within the membrane. For a ‘deep’ quench, on the other hand, there is no such barrier and one
expects the formation of many small domains. The largest domains are expected to grow by
the ‘evaporation’ of smaller ones (Lifshitz–Slyozov mechanism) and by the coalescence with
other domains.

Since bilayer membranes consist of two monolayers, one could, in principle, have
monolayer domains, which extend only across a single monolayer, or bilayer domains, which
extend across both monolayers. Monolayer domains will usually have a nonzero spontaneous
curvature Msp whereas bilayer domains should be typically characterized by Msp = 0 [22].
This distinction was addressed experimentally in [11] for the solid–liquid coexistence of
DLPC/DPPC membranes. In this case, all domains were found to be bilayer domains.

This can be understood from the theoretical point of view if one considers the ‘buried’
interface between the two monolayers of a membrane domain. If this domain extends across
both monolayers, the packing density of the hydrocarbon groups should be rather similar on
both sides of this interface. For a monolayer domain, on the other hand, one monolayer would
be in the solid phase, the other in the fluid phase, and the hydrocarbon density would change
across this interface. Thus, the tension of the ‘buried’ interface should be larger for a monolayer
domain which favours the bilayer domain.

2.4. Morphologies of flat domains

Let us assume, for a moment, that we have a multi-domain bilayer which is essentially flat. One
might then expect to find domains which are similar to those observed for lipid monolayers at
the air–water interface. The simplest case is provided by the coexistence of two fluid phases
for which the line tension of the domain boundary is isotropic and the domains have a circular
equilbrium shape as observed for many monolayer systems. For solid-like domains, on the
other hand, the line tension becomes anisotropic, and the domains are no longer circular. In
fact, for lipid monolayers, one sometimes finds peculiar domain shapes which may be governed
by long-ranged dipolar interactions [23, 24]. For bilayer membranes in water, dipolar forces
are expected to be less important. Thus, we will assume here that the domain shape in a flat
bilayer membrane is primarily determined by the line tension of the domain boundary.

2.5. Line tension of domain boundaries

In order to estimate the line tension λ of the domain boundary, we may consider two adjacent
domains consisting of two different types of lipid, say A and B. A simple estimate is then given
by λ � �U/�mo with the energy difference�U ≡ [ 1

2 (UAA +UB B)−UAB] where �mo � 0.8 nm
is the lateral size of the lipid molecules and UAA, UB B and UAB are the various pair interactions.
If one takes these pair interactions to be of the order of T , one obtains λ � 10−11 N.

So far, there are no experimental data for the line tension in lipid bilayers but there are some
measurements in lipid monolayers at the air–water interface. For a mixture of a phospholipid
(DMPC) and 30% cholesterol, the corresponding line tension has been measured to be about
2 × 10−12 N at zero lateral pressure [25]. Furthermore, an increase in the lateral pressure leads
to a decrease of λ by two orders of magnitude which indicates the vicinity of a critical point in
the monolayer at the air–water interface. In order to use these measurements for an estimate
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of the line tension in lipid bilayers, one would have to know what value of the lateral pressure
leads to the same lipid density as found in the bilayer membrane.

Another mechanism, which can lead to anomalously small line tensions, applies to mixed
membranes with more than two components if some of these components are strongly adsorbed
at the domain boundaries. Such a situation represents the two-dimensional analogue of a
microemulsion in three dimensions.

3. Giant vesicles as model systems

Membranes are typically curved and the coupling between this curvature and the membrane
composition has a strong influence on the membrane morphology. This coupling can be studied
in giant vesicles which provide convenient model systems. Indeed, the shape of these vesicles,
which can be directly observed in the light microscope, is governed by a few parameters, some
of which can be varied in a systematic way. These parameters are explained in the following
subsections.

3.1. Volume-to-area ratio

Lipid membranes in water have two important properties. Since the membrane molecules
are highly insoluble in water, the total area A of the membrane is conserved (at constant
temperature and constant osmotic conditions). In addition, these membranes are permeable
to water but highly impermeable to ions, macromolecules and nanoparticles which implies
that the vesicle adapts its volume in such a way that the interior and exterior compartments
are osmotically balanced. Thus, the vesicle volume V is also conserved for fixed number of
osmotically active particles in the vesicle interior and for fixed number density of such particles
in the exterior compartment (as long as the number densities of the osmotically active particles
are large compared to κ/TV).

Therefore, the most important quantity which determines the shape of giant vesicles is the
volume-to-area ratio as defined by

v ≡ V/Vsp whereVsp ≡ 4π

3
(A/4π)3/2 (1)

is the volume of a sphere with area A. This geometric quantity satisfies 0 � v � 1 and
represents a control parameter which can be varied by changes in temperature and osmotic
conditions.

Since the thermal expansivity of lipid bilayers is larger than the expansivity of water,
the volume-to-area ratio v decreases with increasing temperature. Changes in the osmotic
conditions lead to inflation or deflation and, thus, to an increase or decrease of v, respectively.

3.2. Tense vesicles and droplet limit

A giant vesicle with volume-to-area ratio v < 1, which is bounded by a fluid membrane and
does not experience external forces, is essentially tensionless. More precisely, the tension
within the vesicle membrane is of the order of κ/R2

ve where κ and Rve are the bending rigidity
of the membrane and the vesicle radius as before. For a lipid bilayer with κ � 10−19 J and
a vesicle radius Rve � 10 µm, one obtains κ/R2

ve � 10−6 mJ m−2 which is indeed a rather
small tension. However, there are several additional mechanisms which can induce a tension
� � κ/R2

ve within the membrane:

(i) inflation by the osmotic pressure;
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(ii) adhesion to a substrate surface and
(iii) formation of solid domains.

In general, � can grow up to the tension of rupture which is of the order of a few mJ m−2.
The membrane tension defines the crossover length ξ� ≡ (4κ/�)1/2: on length scales

which are small compared to ξ� , the shape fluctuations of the membrane are still governed by
the bending rigidity κ ; on length scales which are large compared to ξ� , on the other hand,
the shape fluctuations are governed by this tension. If one observes the vesicle in this latter
regime, the vesicle behaves like a liquid droplet with adjustable volume.

3.3. Membrane composition and area fraction

Now, consider a multicomponent membrane with a composition corresponding to one of its
coexistence regions, compare figure 1. For simplicity, we will focus on the coexistence of two
phases, denoted again by α and β.

If the vesicle membrane undergoes complete phase separation, it will consist of one large α

domain and one large β domain. The corresponding areas Aα and Aβ define the area fractions

χα ≡ Aα/A and χβ ≡ Aβ/A = 1 − χα (2)

where the total vesicle area is given by A = Aα + Aβ . These area fractions can be expressed
in terms of the mole fractions of the coexisting phases and in terms of the specific molecular
areas of the lipids in these different phases.

4. Morphology of multi-domain vesicles

Now, consider a vesicle with a membrane which contains two types of phase domain, α and
β. If both domains were solid, the membrane would have to make some sharp edges or to
break up, a situation which we will not consider here. Therefore, one type of domain, say
β, is always taken to be fluid. Furthermore, we will implicitly assume that spatial variations
of the membrane composition are limited to the domain boundaries and that the width of
these boundaries is much smaller than the size of the domains. This is sometimes called the
strong-segregation limit of phase separation.

4.1. Solid domains in fluid membranes

For a typical binary system with a phase diagram as shown in figure 1(a), a quench into the
two-phase coexistence region will produce solid domains in a fluid membrane. As mentioned,
these segments of solid membrane can be viewed as thin plates. One may then consider two
simple but instructive cases:

(i) the limit of large bending rigidity and
(ii) the limit of small area compressibility.

In these limits, the curvature of the vesicle (i) truncates the phase separation process and (ii)
determines the morphology of the intramembrane domains.

Vesicles with facets. If the solid α domains are rather rigid, they will form planar facets
within the fluid β phase. Such vesicles have been observed by several groups but, as far as we
know, no systematic studies have been published.

As the vesicle develops facets, its membrane will develop a tension since a facetted vesicle
can accommodate less volume than a spherical one. Two possibilities arise:
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Figure 2. Vesicles with stripe domains containing solid α and fluid β domains. All solid α domains
(grey) have the shape of cylindrical segments with vanishing Gaussian curvature. If the vesicle
is inflated and essentially spherical, the solid phase can form narrow stripes as in (a)–(c). If the
vesicle is deflated and prolate, the solid phase can form barrels as in (d) and (e).

(i) the domains will coalesce and grow until the vesicle ruptures or

(ii) the phase separation process will be stopped or ‘frustrated’ by the geometric constraints.

If one compares the decrease in the free energy of the domain boundaries arising from the
coarsening process with the work required to increase the membrane tension beyond the
tension of rupture, one finds that case (ii) should be typical for giant vesicles as discussed
here.

In this latter case, the vesicle will attain the shape of a β sphere with a certain number
Nfac of α facets. If these facets are all of comparable size, this number behaves as

Nfac ≈ 3

2
χ2

α

1

1 − v
for small 1 − v (3)

where the volume-to-area ratio v and the area fraction χα have been defined in (1) and (2),
respectively. For sufficiently small v, on the other hand, the phase separation process can lead
to vesicles with a single facet; the corresponding vesicle shapes will resemble those found for
the weak adhesion to planar substrates, see, e.g., [26].

Vesicles with stripe domains. If the solid α domains are less rigid, they may be bent into
cylindrical segments characterized by vanishing Gaussian curvature. If one starts from a closed
vesicle which is essentially spherical, the solid domains can form narrow stripes as shown in
figures 2(a)–(c). These morphologies are reminiscent of those found experimentally in [11].
Note that more complex networks of stripes are possible; thus, one could have a ‘soccer
vesicle’ where the α domains form the edges of 12 pentagons and 20 hexagons. If the vesicle
has a prolate shape, one might end up with the barrel-type morphologies shown in figures 2(d)
and (e).

In principle, it would not be difficult to calculate the equilibrium states for such vesicles in
a systematic way. These shapes depend on the bending rigidities of the two membrane phases,
on their spontaneous curvatures and on the line tension of the domain boundaries. If one
decreases this line tension, the number of stripes should increase and the width of the stripes
should decrease. Such an effect has been observed in [11] after the addition of cholesterol to
the membrane. In practice, the freezing process may lead to various types of defect and the
resulting morphologies will then be less ordered than those shown in figure 2.
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Figure 3. (a) Domain-induced budding of a membrane segment must occur as soon as the size
of the β domain exceeds a certain threshold value provided the tension within the membrane is
sufficiently small; (b) a large α vesicle decorated with many β buds which may arise via phase
separation as studied in [29] and (c) vesicle with a β bud sandwiched between two α buds.

4.2. Fluid domains in fluid membranes

Now, let us consider a mixture which exhibits a coexistence region of two fluid phases as shown
in figure 1(b) or (c). If we quench the system into this two-phase coexistence region, we obtain
two different types of fluid domain, α and β. In this case, the domains have a tendency to form
buds as indicated in figure 3 [22, 27–29].

Domain-induced budding. First, consider a single β domain of area Aβ surrounded by α

phase. If the domain is essentially flat and has a linear size L ≡ (A/π)1/2, the excess free
energy associated with its boundary line is ∼λL which grows linearly with L. If we transform
the domain into a spherical bud connected to the α phase by a small neck, we get rid of this
line energy but must pay some bending energy. For vanishing spontaneous curvature, the latter
energy is, however, independent of the domain size which implies that the flat domain must
bud as soon as it has reached a certain characteristic size Lc. A nonzero spontaneous curvature
breaks the symmetry between the two sides of the bilayer but acts to make the budding process
even more favourable.

If one ignores the curvature of the surrounding α membrane, the characteristic domain
size Lc of the β domain with bending rigidity κ is given by [22, 27]

Lc = Lc(ξ, Msp) = ξ	c(ξ |Msp|) (4)

which depends on the spontaneous mean curvature Msp of the β domain and on the invagination
length ξ ≡ κ/λ. The shape function 	c(x) decreases monotonically with increasing
x ≡ ξ Msp . Therefore, one has Lc(ξ, Msp) � ξ	c(0). The spherical cap model studied
in [22, 27], which ignores the precise shape of the neck region, leads to 	c(0) = 8. Using
these relations, the characteristic domain size Lc has been estimated to be of the order of
80–800 nm for lipid bilayers [2, 22]. Within the spherical cap model, one can also calculate
the domain size L = L∗ for which the flat domain and the spherical bud have the same free
energy; the latter length is given by L∗ = ξ	∗(ξ |Msp|) with 	∗(0) = 4.

Neck condition. A vesicle which consists of two fluid domains α and β often attains a limit
shape in which the β domain forms a complete bud, i.e., a spherical bud which is connected to
the mother vesicle by an infinitesimal neck. In the spherical cap model, the boundary between
the two domains is assumed to be located within the neck since it then has the smallest length
and, thus, the smallest energy. This assumption is confirmed by a systematic minimization for
two-domain vesicles [28].
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Adjacent to the neck region, the mean curvature M of the budded β domain and the mean
curvature Mα of the mother vesicle satisfy the condition [28]

κ(M − Msp) + κα(Mα − Msp,α) = λ/2 (5)

where the bending rigidities, κ and κα, and the spontaneous mean curvatures, Msp and Msp,α ,
of the β and α domains will usually be different. If the second term on the left-hand side of (5)
is small, this relation leads to the characteristic domain size Lc = 2/M ≈ 4ξ/(1 + 2ξ Msp)

which is equivalent to (4) with 	c(0) = 4. In principle, the neck condition (5) could be used to
determine the line tension λ from a measurement of the mean curvatures Mβ and Mα provided
the spontaneous curvatures are sufficiently small and can be ignored.

Volume constraint and membrane tension. The balance between the line and bending
energies, as described above, is appropriate as long as the membrane does not experience
additional constraints. For vesicles, one has the constraints on membrane area and vesicle
volume which tend to suppress the formation of buds [28]. This can be understood within the
spherical cap model if one considers a single β domain surrounded by α membrane which
is subject to a tension as discussed in [22]. One then finds three different regimes for the
membrane tension � (which we take to have the opposite sign from the one used in [22]). These
three tension regimes are separated by the characteristic tensions �1 ≡ κ/32ξ2 = λ2/32κ and
�2 ≡ λ2/8κ which depend on the bending rigidity κ of the β domain and on the line tension
λ of the domain boundary.

For 0 < � � �1, one has basically the same situation as for the tensionless case: the flat
domain with M = 0 becomes unstable at the characteristic size Lc = Lc(�) which increases
with � and grows up to Lc = 16ξ for � = �1. If the tension satisfies �1 < � � �2, the
flat domain stays metastable for all values of the domain size L but there is an intermediate
range of L-values for which the free energy of the bud state with mean curvature M = 2/L
is smaller than the free energy of the flat domain state with M = 0. In the latter case, the
domain may transform into a bud if it overcomes the activation barrier which separates these
two states. Finally, for sufficiently large tensions � > �2, the flat state has the lowest free
energy for all values of L.

The characteristic tensions �1 and �2 are proportional to �sc ≡ κ/ξ2 = λ2/κ which
defines the basic tension scale for this problem. For lipid bilayers with κ = 10−19 J and
λ = 10−11 N, one has �sc = 1 mJ m−2 which is somewhat smaller than the tension of rupture.
This implies that all three tension regimes should be accessible to experimental studies.

Experiments. Very recently, fluid domains in fluid membranes have been directly observed
by optical microscopy for three-component membranes containing phospholipid (DOPC),
cholesterol and sphingomyelin [12]. So far, only one composition characterized by identical
mole fractions for all three components has been studied. Furthermore, the vesicles observed
in [12] were presumably inflated and, thus, could not undergo domain-induced budding. In
contrast, for deflated vesicles with the same membrane composition, we observe a strong
tendency for budding as shown in figure 4. What remains to be done is to use fluorescent probes
for these deflated vesicles in order to visualize their intramembrane domains. In addition, the
different domains will differ in their rheological properties which can be determined by the
experimental methods described in [30].
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(a)

(b)

Figure 4. Optical micrographs of a three-component vesicle which contains the same mole fractions
of phospholipid (DOPC), cholesterol and sphingomyelin: (a) shape sequence induced by heating
and (b) dumbbell fluctuations at constant temperature (25 ◦C). Cooling leads to a shape sequence
which corresponds to the inverse of the sequence shown in (a). We believe that the underlying
domain structure corresponds to figure 3(c). The bar represents 10 µm.

θ α

β

α α αβ β

β

(a)                                                (b)                                                  (c)

Figure 5. Strong adhesion of vesicles to a substrate surface: (a) the vesicle resembles a droplet
with effective contact angle θ and adjustable volume; (b), (c) the substrate recruits the A lipids to
the contact area and, thus, induces phase separation into an A-rich phase α and an A-poor phase β.
If α is a solid phase, the membrane composition within the contact area in (b) and (c) corresponds
to the one-phase region S and to the two-phase region in the phase diagram of figure 1(a), and one
has adhesion-induced solidification.

5. Domain formation via adhesion

5.1. Weak versus strong adhesion

As mentioned, vesicles which experience a relatively large tension behave like droplets with
an adjustable volume. Therefore, if such a vesicle adheres to a substrate surface, it will attain
the shape of a spherical cap as shown in figure 5(a). In contrast to a liquid droplet, the volume
of this cap is not fixed, however, but is determined by the balance between the adhesion and
the osmotic pressure arising from dispersed ‘particles’ which cannot permeate the membrane.

As an example, consider a vesicle of radius Rve = (A/4π)1/2 with volume-to-area ratio
v = 1 which is osmotically balanced with the exterior ‘particle’ concentration ρex. If this
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vesicle is attracted to a substrate with adhesion energy W per unit area, the volume-to-area ratio
v of the spherical cap depends on the dimensionless adhesion parameter w ≡ 2|W |/(T Rveρex)

and is given by

v ≈ 1 − 3

2

(
w

3

)2/3

for small w (6)

and by

v ≈ 3

2

(
2

3w

)1/2

for large w. (7)

In the derivation of these relations, the finite area compressibility, which can change v by a
few per cent, has been ignored.

5.2. Adhesion-induced shift of coexistence line

Now, assume that the membrane of the adhering vesicle contains two lipid components, A
and B. In general, these two components will experience different forces arising from the
substrate surface. Let us assume, for example, that the membrane contains negatively charged
A molecules and electrically neutral B molecules which interact with a positively charged
substrate surface. In such a situation, the substrate surface attracts the A molecules strongly
by electrostatic forces whereas the B molecules are attracted only weakly by van der Waals
forces. For a fluid membrane, the molecules can diffuse laterally and the more strongly attracted
component will be recruited to the contact area of the adhering vesicle.

Depending on the topography and the chemical composition of the substrate surface, one
may have some kinetic barriers for the lateral diffusion within the contact area. One example
for such a barrier is provided by membrane adhesion via stickers and repellers which is briefly
discussed further below. On the other hand, if the A and B molecules are comparable in size,
and if the substrate surface is smooth and uniform, this kinetic barrier is expected to be small
since the bound segment of the adhering vesicle is not in direct contact with the substrate
surface but is separated from it by a water layer of one to two nanometres.

The overall composition of the two-component vesicle membrane can be characterized
by the mole fraction X ≡ NA/(NA + NB) of the A molecules where NA and NB are the total
number of A and B molecules, respectively. For the unbound vesicle, two-phase coexistence
corresponds to Xβ(T ) < X < Xα(T ) with temperature-dependent mole fractions Xβ and Xα

corresponding to the β and α phases, respectively, compare figure 1. In the following, we will
consider vesicles with X < Xβ which implies that the membranes of the unbound vesicles
have uniform composition corresponding to the fluid β phase.

If such a vesicle adheres to a substrate surface which attracts the A molecules more strongly,
the bound membrane segment of the vesicle will acquire an A-rich composition characterized
by the mole fraction X ′ > X whereas the unbound membrane segment of the vesicle will
acquire an A-poor composition with mole fraction X ′′ < X .

If the mole fraction X ′ of the bound segment satisfies Xα(T ) < X ′, this segment is in the
α phase whereas the unbound segment of the vesicle stays in the β phase. This is the situation
shown in figure 5(b). Thus, if the α phase is solid, the adhesion process leads to solidification
of the membrane within the contact area. On the other hand, if X ′ satisfies Xβ < X ′ < Xα , the
bound membrane segment will undergo phase separation into α and β domains as indicated
in figure 5(c). During the initial stages of these processes, the total vesicle area may again
change if the specific molecular areas of the lipid components are different in the two phases.
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5.3. Adhesion via sticker molecules

If only one of the two components, say A, is attracted to the substrate, this component acts as
a sticker molecule. It is now useful to distinguish two types of interaction:

(i) trans interactions between one such sticker with the substrate surface and
(ii) cis interactions between two stickers within the same membrane.

The strength of the latter interactions, which may be repulsive or attractive, will be denoted by
U [31].

Adhesion via stickers frequently leads to domain formation within the contact area. Several
mechanisms for this process must be distinguished. First, if the cis interaction U is attractive,
the unbound membrane undergoes phase separation provided the attractive strength U of the cis
interactions exceed a certain threshold value Uc. This threshold value is significantly reduced if
the membrane adheres to another surface [32, 33]. This reduction represents a renormalization
of the cis interactions by the confined membrane fluctuations.

Secondly, if the cis interactions are purely repulsive, phase separation into sticker-rich
and sticker-poor domains also occurs if the size of the stickers is larger than the size of the
non-adhesive membrane components [32]. This process is driven by an effective line tension
which depends on the size of the stickers and arises from the interplay of shape fluctuations and
sticker clusters. Likewise, phase separation also occurs, for purely repulsive cis interactions,
if the rigidity of the stickers is larger than the rigidity of the non-adhesive components [33].
In both cases, the mechanism for domain formation is of purely entropic origin.

Thirdly, membrane adhesion can lead to domain formation if the membrane contains both
stickers and repellers. The latter types of molecule are nonadhesive but protrude from the
membrane surface and, thus, impose a steric barrier for the adhesion. If all cis interactions
between the stickers and repellers are purely repulsive, one may integrate over the composition
variables and derive an effective potential for the membrane–membrane interactions which has
a potential barrier [33, 34]. Such a potential barrier represents an energetic mechanism for
domain formation.

In the presence of an effective potential barrier, the adhesion dynamics represents a
nucleation process [35]. Thus, in the presence of repellers, adhesion is governed by the
nucleation of sticker clusters or islands. The diffusion and coalescence of these clusters leads
to the formation of distinct domain patterns at intermediate times [36]. For relatively large
barriers arising from long repellers, a single sticker domain is nucleated within the contact
area which grows via the condensation of additional stickers. For relatively small barriers,
on the other hand, many sticker domains are formed initially. As additional stickers diffuse
into this area, they tend to condense at those domains which are close to the contact line.
At intermediate times, these sticker domains coalesce and form an outer ringlike domain of
stickers which encloses an inner domain of trapped repellers (this represents the previously
mentioned example for a kinetic barrier which suppresses lateral diffusion within the contact
area). At later times, this domain pattern is inverted and one obtains one large sticker
domain which is surrounded by repellers. Very similar patterns have been observed in the
immunological synapse between T cells and antigen-presenting cells for which the sticker
molecules correspond to MHC peptides [37].

6. Outlook

In this article, we have discussed intramembrane domains in the context of bilayer membranes
which contain only a few membrane components. However, similar domains should be present
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Figure 6. Possible procedure to create membranes with multi-domain patchworks: (a) using
micropipettes, two vesicles with different liquid phases α and β are brought into close proximity,
and (b) after the two membranes have fused, one obtains a vesicle with two large intramembrane
domains.

for biomembranes which are composed of a very large number of different lipids and proteins.
As mentioned, it is now believed that biomembranes contain ‘rafts’ which are membrane
domains built up from phospholipids, sphingomyelin and cholesterol [2, 8–10]. Some of these
rafts seem to form caveolae which are small buds of the plasma membrane. It is interesting
to note that the cartoons which have recently appeared in the biological literature in order
to illustrate the formation of caveolae from rafts [38, 39] are rather similar to the process of
domain-induced budding as shown in figure 3(a).

Likewise, the immune response of T cells and antigen-presenting cells leads to
characteristic domain patterns within the immunological synapse, i.e., within the contact area
of these cells [37, 40, 41]. These patterns exhibit a time evolution which is rather similar to
the nucleation process discussed at the end of the previous section arising from the interplay
between stickers and repellers.

Finally, it is interesting to note that biomembranes frequently change their topology by
fission and fusion processes. The latter processes could provide an alternative procedure in
order to construct multidomain vesicles as indicated in figure 6. First, one has to prepare two
vesicles with different compositions α and β which correspond to two coexisting phases (at a
certain temperature). These vesicles are then grabbed by two micropipettes and brought into
close proximity as shown in figure 6(a). Finally, the adjacent vesicle membranes fuse which
will lead to the two-domain vesicle shown in figure 6(b). In principle, such a procedure could
be repeated several times and, thus, could lead to membranes with a multi-domain patchwork.
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[20] Dimova R, Döbereiner H G and Lipowsky R 2002 Biophys. J. 82 506a
[21] Miao L, Seifert U, Wortis M and Döbereiner H-G 1994 Phys. Rev. E 49 5389
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